skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shen, Jia Tracy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Since the introduction of the original BERT (i.e., BASE BERT), researchers have developed various customized BERT models with improved performance for specific domains and tasks by exploiting the benefits of transfer learning. Due to the nature of mathematical texts, which often use domain specific vocabulary along with equations and math symbols, we posit that the development of a new BERT model for mathematics would be useful for many mathematical downstream tasks. In this resource paper, we introduce our multi-institutional effort (i.e., two learning platforms and three academic institutions in the US) toward this need: MathBERT, a model created by pre-training the BASE BERT model on a large mathematical corpus ranging from pre-kindergarten (pre-k), to high-school, to college graduate level mathematical content. In addition, we select three general NLP tasks that are often used in mathematics education: prediction of knowledge component, auto-grading open-ended Q&A, and knowledge tracing, to demonstrate the superiority of MathBERT over BASE BERT. Our experiments show that MathBERT outperforms prior best methods by 1.2-22% and BASE BERT by 2-8% on these tasks. In addition, we build a mathematics specific vocabulary ‘mathVocab’ to train with MathBERT. We discover that MathBERT pre-trained with ‘mathVocab’ outperforms MathBERT trained with the BASE BERT vocabulary (i.e., ‘origVocab’). MathBERT is currently being adopted at the participated leaning platforms: Stride, Inc, a commercial educational resource provider, and ASSISTments.org, a free online educational platform. We release MathBERT for public usage at: https://github.com/tbs17/MathBERT. 
    more » « less